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Abstract

Observer design for highly nonlinear dynamics is an important issue, particularly

when the locally observable dynamics are not linearly observable. In such circumstances

the ability to reduce the system to observable or observer form is a useful first step to

observer design. We describe and illustrate symbolic computing tools to do that.
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1. Introduction

When nonlinearities are essential, observability and observer design present

new complexities that are absent in linear problems. Unlike linear systems, a
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nonlinear system may be observable for some inputs and not so for others.

Reducing the system to observable or observer form can be a useful first step

to nonlinear observer design, even for these more difficult situations. Computer

tools to do this are the focus of this paper.

We begin with an overview of observability and a short and necessarily

incomplete summary of nonlinear observer design methods is given in Section
2. An observability hierarchy is defined that progresses, in weakening degree,

from �linearly observable� to �zero-input observable� to satisfaction of the

�observability rank condition� to �locally observable.� The tools we describe

herein apply to all of these cases. A new, general observable form for nonau-

tonomous nonlinear systems is introduced and a multiple output generalization

of the observer form construction given in [1] is given in Section 3. We also de-

scribe in detail the computations required to construct the observable and ob-

server forms. In Section 3.5 we describe our implementation of them in
Mathematica. Examples that illustrate all of the observability types in our hier-

archy follow in Section 4. Our tools1 extend the capabilities of the computa-

tions described in [2] to the multiple input/multiple output case.
2. Nonlinear system observability and observers

Consider the nonlinear system

_x ¼ f ðxÞ þ
Xm
i¼1

giðxÞui ¼ fuðxÞ;

y ¼ hðxÞ;
ð1Þ

where x 2M (a neighborhood of x0 in Rn), u 2 Rm, and y 2 Rp. We assume x0
is an equilibrium point corresponding to zero input and output, i.e., f(x0) = 0,

h(x0) = 0. The functions f,gi,h are smooth. We write the right hand side of the

differential equation as fu(x) to emphasize the role of u as a parameter of the

vector field.

2.1. Observability

We very briefly summarize some well established facts about nonlinear sys-

tem observability (see for example, [3,4]). The observation space O of system (1)

is the linear space of functionsM ! R over the field R spanned by all functions

of the form

Lvk � � � Lv1ðhiÞ; k P 0; 1 6 i 6 p; vk; . . . ; v1 2 ff ; g1; . . . ; gmg: ð2Þ
1 A copy of the Mathematica package can be obtained by contacting the first author.
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It is important to emphasize that the observation space consists of all linear

combinations of the functions (2) with real constant coefficients—viz., �over
the field R�. An analytic system (1) is observable on M if for any x1,x2 2M,

x1 5 x2, there is a function U 2 O such that U(x1) 5 U(x2). Associated with

the observation space O is its differential dO, the codistribution

dO ¼ spanfdkjk 2 Og:

The observability codistribution, XO, is the smallest codistribution that contains

the covectors {dh1, . . .,dhp} and is invariant with respect to the vector fields

f,g1, . . .,gm. If dO is nonsingular, then dO ¼ XO.

The system is locally observable at x0 if the observability codistribution, XO

has rankn at x0. This is called the observability rank condition. If x0 is a regular

point of XO(x0), the observability rank condition is necessary as well as suffi-
cient. If the system has zero input, then the observability codistribution reduces

to

XL ¼ spanfLk
f ðdhiÞ; 1 6 i 6 p; 0 6 k 6 n� 1g:

When dimXO(x0) = n but dimXL(x0) < n, the implication is that some states

are distinguishable only under the action of control inputs. When this occurs,

most control inputs do distinguish the states. There are a few singular inputs,
notably u = 0, that do not. Thus, when dimXL(x0) = n we will use the terminol-

ogy observable for zero input at x0. It is also possible to test the linearization of

(1) at x0 for observability. That is, define

A0 ¼
of
ox

ðx0Þ; C0 ¼
oh
ox

ðx0Þ

and test the pair (A0,C0). If the linearization is observable then we say that it is

linearly observable at x0. Linear observability implies zero-input observability.

It is easy to prove that a system is linearly observable at x0 if and only if

dimXL(x0) = n. Thus, we have the following hierarchy

dimXOðx0Þ ¼ n ) locally observable

* *
dimXLðx0Þ ¼ n ) zero � input observable

m *

dim

C0

C0A0

..

.

C0A
n�1
0

2
66664

3
77775 ¼ n () linearly observable:
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2.2. Approaches to nonlinear observer design

An observer for the system (1) is a dynamical system with inputs y(s),u(s),
0 6 s 6 t and output x̂ðtÞ 2 Rn such that x̂ðtÞ is an estimate of x(t) in the sense

that kxðtÞ � x̂ðtÞk ! 0 as t! 1. When (1) is linearly observable there are

many approaches to observer design. On the other hand, if (1) is not linearly
observable, options are limited. Observer design based on linearization up to

output injection was introduced in [5,6] for the single-output case without in-

puts and extended to the multiple output case in [7]. In this approach the idea

is to transform the system (1) into the so-called �observer form�

_z ¼ Azþ uðyÞ; y ¼ Cz; ð3Þ

where A,C is an observable pair. When this is done, observer design is very
easy. As might be expected, systems that can be transformed into the form

(3) are rare but it is interesting to note that linear observability is not necessary

if we do not insist that the transformation be a diffeomorphism. Xia and Zeitz

[8] give conditions for observer construction for systems that are zero-input ob-

servable (see above hierarchy). This method (as do many others) begins with

reduction of (1) to an �observable form� that we will discuss below.

An extension to the case where (1) is not zero-input observable, is given by

Hammouri and Gauthier [9,10]. The idea is to transform the system into the
�time varying� version of (3) specifically the �observer form� given in (4), below.

_z ¼ AðuðtÞÞzþ uðy; uðtÞÞ;
y ¼ z1 � � � zp½ �T ¼ Cz:

ð4Þ

A constructive approach to computing the transformation for single-output

systems is given in [1]. Recently, Souleiman et al. [11] present a different con-

struction that applies to a somewhat larger class of single-output systems in

which the matrix A is allowed to depend on both u and y. That is in (4)

A(u(t)) ! A(u(t),y(t)).

For a system in the form of (4) a Kalman observer can be used

_̂z ¼ AðuðtÞÞẑþ uðuðtÞ; yðtÞÞ þ P ðtÞCTðyðtÞ � CẑÞ;
_P ¼ PATðuðtÞÞ þ AðuðtÞÞP � PCTCP þ Q:

This observer converges exponentially provided u(t) is such that the linear time-
varying system

_z ¼ AðuðtÞÞz; y ¼ Cz

is completely observable [12]. This �passive approach� relies on the natural occur--
rence of a suitably rich input.
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3. Observable and observer forms

When (1) is not linearly observable, but nonetheless locally observable, we

need to be able to reduce the system to either observable or observer form

as a first step to observer design using existing methods. Even for linearly ob-

servable systems this may be a convenience. In this section we describe the
computations needed to do that.

3.1. Control sequences

One characterization of the observation space is given by the following

result.

Lemma 3.1. The observation space O is equivalent to the linear vector space of
functions M ! R over the field R

eO ¼ spanR Lfuk
� � � Lfu1

ðhiÞ
1 6 i 6 p; k P 0;

u1; . . . ; uk 2 f0; 1gm
����

� �
:

Proof. The result follows from direct calculations based on the �linear in con-

trol� structure of (1). h

This motivates the following definitions. Define a sequence of

codistributions

E0 :¼ spanfdhg;
Ek ¼ Ek�1 þ spanfdLfuk

� � � Lfu1
ðhÞjui 2 f0; 1gm; i ¼ 1; . . . ; kg:

We assume that, �almost everywhere� on a neighborhood of x0, (i) the codistri-

butions Ek are of constant dimension, and (ii) there exists a smallest p* such

that

E0 � � � � � Ep� ¼ Ep�þ1 ¼ dO:

Let nk denote the codimension of Ek�1 in Ek. Then there exists sets of control

sequences [1]

I1 ¼ fðui1Þjui1 2 f0; 1gmg;
I2 ¼ fðui1 ; ui2Þjui1 2 f0; 1gm; ui2 2 f0; 1gmg;

..

.

that satisfy

(a) If (ui1, . . .,uij) 2 Ij then (ui1, . . .,uij�1) 2 Ij�1, for jP 2.
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(b) The one-forms[k
l¼1

fdLful
� � � Lfu1

ðhÞjðui1 ; . . . ; uilÞ 2 Ilg [ fdhg

spanEk on a neighborhood of x0. In the single-output case these one-forms

actually constitute a basis for Ek and the cardinal number of Ik is nk.

We obtain the control sequences, Ik, by direct, sequential construction of the

codistributions Ek. See [1] for more details about the single-output case.

Example 3.2. Consider the 5th order system

_x ¼

ex1þx2 � 1þ ux21
�ex1þx2 þ 1þ uðex3�x2 � e�x1�x2 � x21Þ

�ex1þx2 þ 1þ x31e
�x1�x3 � ux21

x5
x1

2
6666664

3
7777775
; y ¼

x1
x4

� �
:

This system is locally observable, but it is not observable for all inputs. In par-

ticular, it is not observable with u � 0. We use the Mathematica function Con-
trolSequences (see Section 3.5) to compute

E0 ¼ fd½x1�; d½x4�g;
E1 ¼ fd½x1�; d½x2�; d½x4�; d½x5�g;
E2 ¼ fd½x1�; d½x2�; d½x3�; d½x4�; d½x5�g;

and

I1 ¼ f0g; I2 ¼ f0; 1g:
Now, direct computation leads to the four one-forms

a ¼ d½Lfu¼0
ðh1Þ� ¼ ex1þx2ðd½x1� þ d½x2�Þ;

b ¼ d½Lfu¼0
ðh2Þ� ¼ d½x5�;

c ¼ d½Lfu¼1
Lfu¼0

ðh1Þ� ¼ ex1þx3ðd½x1� þ d½x3�Þ;
d ¼ d½Lfu¼1

Lfu¼0
ðh2Þ� ¼ d½x1�;

and

spanfd½x1�; d½x4�; a; bg ¼ spanfd½x1�; d½x2�; d½x4�; d½x5�g ¼ E1;

spanfd½x1�; d½x4�; a; b; c; dg ¼ spanfd½x1�; d½x2�; d½x3�; d½x4�; d½x5�g ¼ E2:
3.2. Observability indices

Consider the set of Ij consisting of nj j-tuples:

I j ¼ fðui1;1; . . . ; uij;1Þ; . . . ; ðui1;nj ; . . . ; uij;njÞg
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and define the p Æ nj-vector of jth order Lie derivatives

LfIj
ðhÞ ¼

Lf
ui1 ;1

� � � Lf
u
ij ;1
ðhÞ

..

.

Lf
u
i1 ;nj

� � � Lf
u
ij ;nj

ðhÞ

2
6664

3
7775:

Now, consider the collection of covectors dLfIi
ðhÞ for i = 0, . . .,p*, which we

can arrange in the (block) tableau

dh1 dh2 � � � dhp
dLfI1

ðh1Þ dLfI1
ðh2Þ � � � dLfI1

ðhpÞ

..

. ..
. ..

. ..
.

dLfIp�
ðh1Þ dLfIp� ðh2Þ � � � dLfIp�

ðhpÞ

:

From this set we seek to identify a maximal set of independent covectors. We

can do this by searching down columns or across rows (recall the linear coun-

terpart). For a row search, begin with the first row and work from left to right,

then move to the next row. If the outputs are them selves independent, we iden-

tify p chains of covectors dhidLf 1i
ðhiÞ � � � dLf

j1�1

i
ðhiÞ of length ji, i = 1, . . .,p. The

integers ji are the observability indices. For an observable system j1 + j2 +
� � � + jp = n. For autonomous systems this definition of observability indices

is equivalent to that in [13,14].

3.3. Observable form

If the system is observable, then we can define new state variables z 2 Rn via

the transformation x ! z.

z ¼

h1

..

.

L
f
k1�1

1

ðh1Þ

..

.

hp

..

.

L
f
kp�1
p

ðhpÞ

2
6666666666666664

3
7777777777777775

: ð5Þ

If the inverse is continuous and the transformed equations produce unique

solutions we call the transformed equations an observable form. This is consis-

tent with the usual terminology for linear systems and autonomous nonlinear
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systems. In the latter case, the transformed equations are in the form of p

chains,

_z1 ¼ z2 � � � _zj1þ���þjp�1þ1 ¼ zj1þ���þjp�1þ2

..

.
� � � ..

.

_zj1�1 ¼ zj1 � � � _zj1þ���þjp�1 ¼ zj1þ���þjp

_zj1 ¼ u1ðzÞ � � � _zj1þ���þjp ¼ upðzÞ
y1 ¼ z1 � � � yp ¼ zj1þ���þjp�1þ1

:

Remark 3.3 (Xia and Zeitz). Note that if

rank

dh1

..

.

dL
f
k1�1

1

ðh1Þ

..

.

dhp

..

.

dL
f
kp�1
p

ðhpÞ

2
6666666666666664

3
7777777777777775

ðx0Þ ¼ n

the implicit function theorem guarantees the existence of a smooth (local) in-

verse of the transformation (5) so that the transformation is a diffeomorphism.

However, an inverse may exist even if the rank condition fails. In this case, the

inverse will only be continuous. If the transformed differential equations have
unique solutions on a neighborhood of x0, then this is still a useful transforma-

tion. This point is described more fully in Xia and Zeitz [8].
Example 3.4 (Continuation of Example 3.2). Let us return to Example 3.2 and

compute the observable form. We find the observability indices to be 3,2. The

transformation to observable form is

z1 ¼ x1; z2 ¼ �1þ ex1þx2 ; z3 ¼ �1þ ex1þx3 ; z4 ¼ x4; z5 ¼ x5

from which the observable form is obtained

d

dt

z1
z2
z3
z4
z5

2
6666664

3
7777775
¼

z2 þ uz21
uz3
z31
z5
z1

2
6666664

3
7777775
; y ¼

z1
z4

� �
:
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In this example, we see the two-chain structure of the observable form equa-

tions. Also, the role of the control input is displayed. We see clearly that the

system is not observable if u � 0.
3.4. Observer form

Now, we consider transforming (1) into the special form (time-varying linear

up to output injection) (4). In this form it is possible to use linear methods

for observer design. Eq. (4) will be called an observer form of which (3) is a spe-

cial case. Not every locally observable nonlinear system (1) has an observer
form.

The formulation we follow is that of [9,1,10]. First, let us introduce some

definitions. Consider a set of p vector fields, X = {X1, . . .,Xp}. Sequentially de-

fine sets of p + 1-forms

XX
1 ¼ spanRfdLfuðhiÞ^

p
j¼1dhjji ¼ 1; . . . ; p; u 2 f0; 1gmg;

XX
kþ1 ¼ spanRfdLfuðiXaÞ^

p
j¼1dhjja 2 XX

k ; u 2 f0; 1gmg;
XX ¼

X
kP1

XX
k :

Let if(x) denote the usual contraction of the form x with respect to the vector

field f. We use the notation

iX ðxÞ ¼ iX 1
� � � � � iX pðxÞ:

The following proposition, given in [10], generalizes the single-output result in

[9] to multiple outputs.

Proposition 3.5. The system (1) is transformable into the observer form (4) if and

only if:

(1) dh1 ^ � � � ^ dhp(x0) 5 0 (independent outputs).

(2) There exists a set of vector fields X1, . . .,Xp that satisfies
(a) LXi

hj = dij
(b) dimXX = n � p

(c) "x 2 XX,diX(x) = 0

(d) iX(x1) ^ � � � ^ iX(xn�p) ^ dh1 ^ � � � ^ dhp(x0) 5 0 where xj j = 1, . . .,
n � p is any basis for XX.

If these conditions hold, then the transformation is given by

z1 ¼ h1ðxÞ; . . . ; zp ¼ hpðxÞ;
dzjþp ¼ iX ðxjÞ; j ¼ 1; . . . ; n� p:

ð6Þ
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Proof. A sketch of the proof is given in [10]. However, it is useful here to pro-

vide a more complete discussion of the sufficiency part in order to clarify the

nature of later computations. It is provided in Appendix A. h

Let us make a few comments about the stated conditions.

Remark 3.6 (Concerning item 2).

(1) Item (a) implies the p-tuple of vector fields X = [X1, . . .,Xp] forms a right

inverse of the Jacobian oh/ox. The vector field Xi is aligned with the direc-

tion of yi = hi, that is, it is orthogonal to the codimension-1 surfaces
hi(x) = constant. As in the single-output case [15] every Xi satisfying the

conditions of Proposition 3.5 is a constant vector field in the linearized

coordinates, so it takes the form:

X i ¼
o

ozi
þ cipþ1

o

ozpþ1

þ � � � þ cin
o

ozn
; i ¼ 1; . . . ; p:

Furthermore, a linear change of coordinates ~z ¼ Tz with ~zi ¼ zi;
i ¼ 1; . . . ; p leaves the equations in TVLOI form and one can be found

so that

X i ¼
o

o~zi
:

Such Xi satisfy the conditions of Proposition 3.5 for a system in the form

observer form (4), [9,10].

(2) In item (b) XX is considered a vector space over the reals. So dimXX =

dimspanRX
X, which is not the same as dimspanXX. See item (5) below.

(3) Item (c) is an integrability condition for each of the 1-forms iX(x). Recall
that any 1-form has the representation

x ¼
X

aiðxÞdxi:

Thus, we have the differential

dx ¼
X
i

dai ^ dxi ¼
X
i;j

oai
oxj

dxj ^ dxi ¼ 0:

Since dxj ^ dxi = � dxi ^ dxj, this implies that the Jacobian oa/ox is sym-
metric so that the 1-form dx is an exact differential.

(4) Item (d) implies that the n coordinate functions

z1ðxÞ ¼ h1ðxÞ; . . . ; zpðxÞ ¼ hpðxÞ; zpðxÞ; . . . ; znðxÞ

are independent thereby defining a valid coordinate transformation.
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(5) Items (b) and (d) together imply dimspanXX = n � p. This follows from

the fact item (d) requires iX(x1)^ � � � ^iX(xn�p) 5 0 for every basis

{x1, . . .,xn�p} of X
X, i.e., the 1-forms iX(x1), . . ., iX(xn�p) are independent

in the usual sense (field of admissible functions). But this can be true only

if the p-forms xi are independent. To see this, suppose X is a vector field

on Rn and suppose x1,x2 are p-forms. Define a third p-form that is
dependent on x1 and x2, x3 = c1(x)x1 + c2(x)x2. Then iX(x3) = c1(-
x)iX(x1) + c2(x)iX(x2). Consequently,

iX ðx1Þ ^ iX ðx2Þ ^ iX ðx3Þ
¼ c1ðxÞiX ðx1Þ ^ iX ðx2Þ ^ iX ðx1Þ þ c2ðxÞiX ðx1Þ ^ iX ðx2Þ ^ iX ðx2Þ ¼ 0:

This calculation extends to the general case in which there is a dependence
among any number of p-forms.

Now, we need to provide a construction for the set of vector fields X. First,

obtain a set of vector fields Y1, . . .,Yp that satisfy

dh1

..

.

dL
f
k1�1

1

ðh1Þ

..

.

dhp

..

.

dL
f
kp�1
p

ðhpÞ

2
6666666666666664

3
7777777777777775

Y 1 � � � Y p½ � ¼

0 � � � 0

..

. . .
. ..

.

1 0

0 ..
.

0 � � � ..
.

..

.
� � � 0

0 � � � 1

2
66666666666664

3
77777777777775
: ð7Þ

For any control sequence u1,u2, . . . we can define the set of vector fields

Zi
u1���uji�1 ¼ fuji�1 ; ½� � � ½fu1 ; Y i� � � ��½ �; i ¼ 1; . . . ; p:

Now, identify the subset of control sequences I � Ip� that satisfy

det LZ1

u1 ���uj1�1
ðhÞ � � � LZp

u1 ���ujp�1
ðhÞ

� �
6¼ 0

and use any one of these sequences to obtain

X 1 � � � Xp½ � ¼ LZ1

u1 ���uj1�1
ðhÞ � � � LZp

u1 ���ujp�1
ðhÞ

h i�1

	 Z1
u1���uj1�1 � � � Zp

u1���ujp�1

h i
: ð8Þ

The following theorem summarizes the key result. It generalizes the single-out-
put case proved in [1].
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Proposition 3.7. The system (1) is transformable into the observer form (4) if and

only if:

(1) I 6¼ ;.
(2) 8ðu1; . . . ; up�Þ 2 I; dLZ

u1 ���uji�1
ðhiÞ ¼ 0; i ¼ 1; . . . ; p.

(3) The set of vector fields X1, . . .,Xp is given by Eq. (8), and the following con-
ditions hold:

(a) dimXX = n � p.

(b) "x 2 XX,diX(x) = 0.

(c) iX(x1) ^ � � � ^ iX(xn�p) ^ dh1 ^ � � � ^ dhp(x0) 5 0 where xj j = 1, . . .,
n � p is any basis for XX.

Proof. Sufficiency follows from Proposition 3.5. Necessity is proved in Appen-

dix B. h
3.5. Computational tools

The computations described above have been implemented in a Mathemat-

ica package. In this section, we wish to summarize the key elements of our

implementation.

The package has three primary high level functions:

(1) ObservabilityIndices, computes the observability indices.

(2) ObservableTransform, computes the transformation to observable form.

(3) LinearizeToOutputInjection, computes the transformation to observer

form.

These are supported by several utility functions that compute the control se-

quences, solve the first order partial differential equations of Proposition 3.5,
and others. The most important of these are

(1) ControlSequences
(2) OmegaForms
(3) SpanR

Underlying these calculations are basic tools for working with differential

forms. We have slightly extended the Exterior Differential Calculus package
of [16]. These three new tools have been incorporated into the ProPac package

described in [17].

A key construction is ControlSequences which performs the computations

outlined in Section 3.1. The algorithm proceeds as follows.
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Algorithm (ControlSequences).

Input: f, h, x, u ð _x ¼ fuðxÞ; y ¼ hðxÞÞ
Output: list of indices, nk, list of sets of control sequences, Ik
begin

E0 ¼ fdhg; r ¼ dimE0; k = 0;
while (dimE < n)&&(k < n) do
k++

Set up Ek ¼ d½Lfuk
� � � Lfu1

ðhÞ� [ dh
n o

with generic control sequence

nk :¼ dimEk � dimEk�1;

Enumerate all controls uk 2 {0,1}m that do not reduce dimEk ¼: Uk

Pick out nk control sequences of the form

sk ¼ fsk�1; ukg; uk 2 Uk; sk�1 2 Ik�1 ¼: Ik
end

Once the control sequences are obtained, it is a simple mater to set up and

solve Eqs. (7) and (8). Once the vector fields X1, . . .,Xp are obtained, we com-

pute XX using the function OmegaForms.
Algorithm (OmegaForms).

Input: f, h, x, u, X1, . . .,Xp

Output: a basis for XX

begin

XX
1 ¼ spanR dLfuðhiÞ^

p
j¼1dhj

i ¼ 1; . . . ; p
u 2 f0; 1gm
����

� �
;

XX ¼ XX
1 ;

k = 1;

while dimXX < n�p do
k++

XX
k ¼ spanR dLfuðiX ðaÞÞ^

p
j¼1dhj

a 2 XX
k�1

u 2 0; 1f gm
����

� �
XX :¼ XX þ XX

k

end

The central calculations in the above procedure are the summation in

the last step and the construction spanR. The summation is based on item

(4) of Remark 3.6. We successively check each (p + 1)-form a 2 XX
k . If

a 2 spanXX we drop it, otherwise we join it to the set of (p + 1)-forms that de-

fine XX.
Now, consider the procedure for computing spanR.
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Algorithm (SpanR).

Input: a list of n forms of dimension p, A = {a1, . . .,an}
Output: a set of basis forms for spanRA

begin

Basis = {a1} (assuming a1 is not trivial)
k = 2

while k 6 n do
k++

Check if ak can be expressed as a linear combination, over the reals, of the

forms in Basis. If not add ak to Basis.

end

The test in the above algorithm is implemented using the Mathematica func-

tion Reduce. Suppose, at the kth step, we have

Basis ¼ fb1; . . . ; bqg:

We want to determine if there exists real numbers k1, . . .,kq such that

ak ¼ k1b1 þ � � � þ kqbq:

Reduce allows us to seek solutions of this equation with the unknowns
k1, . . .,kq restricted to real numbers.
4. Examples

Several examples follow that illustrate the computations (these and other

examples can be found worked out in the Mathematica notebook Examples.nb

that can be downloaded from http://www.pages.drexel.edu/~hgk22/note-
book.htm). In each case we compute both the observable and observer forms.

First, Example 4.8 is linearly observable (and therefore zero-input observable).

Example 4.9 is zero-input observable but not linearly observable. Example 4.10

is locally observable but does not satisfy the observability rank condition.

Example 4.11 is linearly observable. Example 4.12 is not zero-input observable

but satisfies the observability rank condition.

Example 4.8 (Krener and Respondek Example 7.3). Consider the three state,
nonautonomous system from [7]

d

dt

x1

x2

x3

2
664

3
775 ¼

x2

x3 þ ð1þ ex1Þu

3x21x
2
2 þ x31x3 þ ð1þ x1 þ x2Þu

2
664

3
775; y ¼ x1:

http://www.pages.drexel.edu/~hgk22/notebook.htm
http://www.pages.drexel.edu/~hgk22/notebook.htm
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This system is linearly observable. Notice that it is already in observable form.

Applying the tools described above, we find that the system transforms to ob-

server form with the transformation

z1 ¼ x1; z2 ¼ ðx41 � 4x2Þ=2; z3 ¼ �x31x2 þ x3:

The observer form is

d

dt

z1
z2
z3

2
64

3
75 ¼

0 � 1
2

0

0 0 �2

0 � 1
2
u 0

2
64

3
75

z1
z2
z3

2
64

3
75þ

1
4
y4

�2ð1þ eyÞu
ð1þ y � ð1þ eyÞy3 þ y4=4Þu

2
64

3
75:
Example 4.9 (Xia and Zeitz Example 2). Now, consider the simple two state,

single output, autonomous example from [8]. Although the transformation is

smooth, its inverse is only continuous.

d

dt

x1
x2

� �
¼

x1
x2

� �
; y ¼ x21 þ x52:

The system is observable with index 2, but it is not linearly observable. The
transformation to observable form is smooth

z1 ¼ x31 þ x52; z2 ¼ 3x31 þ 5x52:

But its inverse is not

x1 ¼ � � 1

2

� �1=3

ð5z1 � z2Þ1=3;

x2 ¼ � � 1

2

� �1=5

ð�3z1 þ z2Þ1=5:

The observable form equations are

d

dt

z1
z2

� �
¼

z2
�15z1 þ 8z2

� �
; y ¼ z1:

The transformation to observer form is

z1 ¼ x31 þ x52; z2 ¼ 5x31 þ 3x52

and its inverse is

x1 ¼ � � 1

2

� �1=3

ð�3z1 þ z2Þ1=3;

x2 ¼ � � 1

2

� �1=5

ð5z1 � z2Þ1=5:
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The observer form equations are

d

dt

z1
z2

� �
¼

8z1 � z2
15z1

� �
¼

�z2
0

� �
þ

8

15

� �
y:
Example 4.10 (Xia and Zeitz Example 3). Now consider a nonautonomous

example, from [8]. It is not zero-input observable. However, it is observable

with observability index 3. As we will see, the observable and observer form

are the same. The transformation is smooth, but its inverse is merely

continuous.

_x1 ¼ x32;

_x2 ¼ x2u;

y ¼ x1:

The transformation to observable/observer form is

z1 ¼ x1; z2 ¼ �x32
and its inverse is

x1 ¼ z1; x2 ¼ �z1=32 :

The transformed equations are

_z1 ¼ �z2;

_z2 ¼ 3z2u;

y ¼ z1:
Example 4.11 (Hou and Pugh). This example is from [18]. They propose a
method for linearization to output injection for multiple output autonomous

systems different from that implemented here. To obtain the observer form

we need to reorder the outputs.

d

dt

x1
x2
x3

2
64

3
75 ¼

x2
x2x3
x2

2
64

3
75; y ¼

0 1

1 0

� �
x1
x2

� �
:

The system is observable with indices 2,1. The transformation to observable
form is simply a reordering of states

z1 ¼ x3; z2 ¼ x2; z3 ¼ x1

leading to

d

dt

z1
z2
z3

2
64

3
75 ¼

z2
z1z2
z2

2
64

3
75:
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The transformation to observer form is

z1 ¼ x3; z2 ¼ x1; z3 ¼ 1
2
ð�2x2 þ x23Þ:

This transformation produces the observer form

d

dt

z1
z2
z3

2
64

3
75 ¼

1
2
ðz21 � 2z3Þ

1
2
ðz21 � 2z3Þ

0

2
64

3
75 ¼

0 0 �1

0 0 �1

0 0 0

2
64

3
75

z1
z2
z3

2
64

3
75þ z21

2

1

1

0

2
64

3
75;

y ¼
z1
z2

� �
:

Example 4.12 (Continuation of Example 3.2). We return to Example 3.2 and

compute the observer form. The transformation to observer form is found to
be

z1 ¼ x1; z2 ¼ x4; z3 ¼ �ex1þx2 ; z4 ¼ �x5; z5 ¼ ex1þx3 :

From this we find the observer form

d

dt

z1

z2

z3

z4

z5

2
66666664

3
77777775
¼

�z3 � 1þ uz21

�z4

uð1� z5Þ
�z1

z31

2
66666664

3
77777775
¼

0 0 �1 0 0

0 0 0 0 0

0 0 0 0 �u

0 0 0 0 0

0 0 0 0 0

2
66666664

3
77777775

z1

z2

z3

z4

z5

2
66666664

3
77777775
þ

�1þ y21u

y2

u

�y1

y31

2
66666664

3
77777775
:

5. Conclusions

The observability properties of nonlinear systems have nuances that have no

counterpart in linear theory. One consequence of this is that there are oppor-

tunities for state estimation in nonlinear systems even when its linearization is

not observable or there is some other pathology associated with observability

(see Section 2). There are important practical implications because problems

like this occur when operating around bifurcation points and in fault detection
and identification. However, to take advantage of these possibilities it is neces-

sary to build observers using new design paradigms, some of which have

emerged in recent years. To do so requires development of new computational

tools.

In this paper, we have described symbolic computations for reducing non-

linear smooth affine systems to observable and observer forms, when possible,
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as the first step in observer design. These tools can be applied to systems that

are linearly observable, locally observable with zero input or merely locally ob-

servable. Our approach involves computations with differential forms, which

experience shows to be extremely efficient.

Our characterization has at its root the computation of sequences of con-

stant controls as formulated in [1]. This idea appears to have its origins in
the pioneering work of [19]. Using this construction, we introduce a local ob-

servable form for nonautonomous systems that is consistent with prior work

and complements the observer form of [10]. Our approach to computing the

observer form is based on a multiple-output generalization (Proposition 3.7)

of the method proposed in [1].

In Section 3.5 we describe the essential computations in our implementation

and in Section 4 we give several examples. The examples are chosen to illustrate

a variety of circumstances. The following cases are covered:

(1) autonomous and nonautonomous,

(2) linearly observable,

(3) not linearly observable, but zero-input observable,

(4) not zero-input observable, but satisfies the observability rank condition,

(5) locally observable, but does not satisfy the observability rank condition.

There are further enhancements that need to be considered. Of course, not
all locally observable systems have an observer form. However, the class of sys-

tems that do can be expanded if one allows for a transformation of the outputs.

This was pointed out in [5]. In the single-output case, necessary conditions for

the output transformation where obtained by Besancon [20] in the framework

employed herein. In the multiple-output case even output reordering helps (see

Example 4.11 and [18]).
Appendix A. Proof of sufficiency part of Proposition 3.5

Sufficiency: Assume that the hypotheses of the proposition hold, and the

new coordinates are defined by Eqs. (6). The vector field fu can be expressed

in the new coordinates

fu ¼
Xn

i¼1

LfuðziÞ
o

ozi
:

We wish to determine the components of the vector field F i
u ¼ LfuðziÞ. Notice

that, for i > p, we can write

dF i
u ^ dz1 ^ � � � ^ dzp ¼ LfuðdziÞ ^ dz1 ^ � � � ^ dzp:
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In view of (6) this becomes

dF i
u ^ dz1 ^ � � � ^ dzp ¼ LfuðiX ðxi�pÞÞ ^ dz1 ^ � � � ^ dzp:

But, Lfu
(iX(xi�p)) 2 XX. So, we can express Lfu

(iX(xi�p)) as a linear combination

of the n � p basis elements of XX where the real coefficients depend on the

parameter u. Thus,

dF i
u ^ dz1 ^ � � � ^ dzp ¼

Xn�p

j¼1

aijðuÞxj ^ dz1 ^ � � � ^ dzp:

One can easily verify the identity iX(xj) ^ dz1 ^ � � � ^ dzp = xj, which, again in

view of (6), implies that xj = dzj+p ^ dz1 ^ � � � ^ dzp, for j = 1, . . .,n � p.

Consequently,

dF i
u ^ dz1 ^ � � � ^ dzp ¼

Xn�p

j¼1

aijðuÞdzjþp ^ dz1 ^ � � � ^ dzp:

Then, it must be true that

dF i
u ¼

Xn�p

j¼1

aijðuÞdzjþp þ
Xp

j¼1

/ðz1; . . . ; zp; uÞdzj:

Note, that it is the integrability requirement that insures that / depends only

on the coordinates z1, . . .,zp. Integrating, leads to

F i
u ¼

Xn�p

j¼1

aijðuÞzjþp þ uðz1; . . . ; zp; uÞ; i ¼ p þ 1; . . . ; n:

For j = 1, . . .,p,

dF i
u ^ dz1 ^ � � � ^ dzp ¼ dLfuðziÞ ^ dz1 ^ � � � ^ dzp:

But, in view of XX
1 , dLfu

(zi) 2 XX, for i = 1, . . .,p. So, the remainder of the argu-

ment proceeds as before.
Appendix B. Proof of the necessity part of Proposition 3.7

Here, we provide a sketch of the proof. The overall logic follows the argu-

ments of [1] for the single-output case.
The conditions of the theorem are coordinate free. So if the system (1) is

transformable to (4) we can verify conditions (1)–(3) in the z-coordinates.

We begin by introducing the �unobservable� distributions (replaces the unob-

servable subspace of linear systems)

F0 ¼ fX jLX hið Þ ¼ 0; i ¼ 1; . . . ; pg;
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Fkþ1 ¼ Fk \ X

LXLfukþ1
� � � Lfu1

ðhiÞ ¼ 0

u1; . . . ; ukþ1 2 ½0; 1�m

i ¼ 1; . . . ; p

�������
8><
>:

9>=
>;:

Our observability assumption on E0; . . . :Ep� implies that

F0 
 � � � 
 Fp� ¼ f0g:
In z-coordinates, we can compute (following tedious computations as in [1])

F0 ¼ fX jCX ¼ 0g;
Fkþ1 ¼ Fk \ fX jðCAÞlkþ1

X ¼ 0g:

Accordingly, introduce the sets of constant vector fields

F 0 ¼ fX 2 RnjCX ¼ 0g ¼ kerC;
F kþ1 ¼ F k \ fX 2 RnjðCAÞlkþ1

X ¼ 0g:

Comparing these, Hammouri and Kinnaert [1] point out that the real vector
spaces Fk span the distributions Fk. Their Lemma 5 and Claim 7 are easily ex-

tended to the multi-output case:

Lemma 2.13. (i) "u 2 {0,1}m, ½fu;Fkþ1� � Fk for k = 0, . . ., p* � 1. (ii) 8X 2
Fk nFkþ1, $u 2 {0,1}m such that ½fu;X � 2 Fk�1 nFk for k = 1, . . ., p*.
Proof. (i) Let X 2 Fkþ1. From the definition of the Fk �s we have for every

(u1, . . .,ur) 2 ({0,1}m)r and 1 6 r 6 k + 1, LXLfur
� � � Lfu1

(hi) = 0, i = 1, . . .,p.
Thus,

L½fu;X �Lfur � � � Lfu1
ðhiÞ ¼ LfuLfur � � � Lfu1

ðhiÞ � LXLfur � � � Lfu1
ðhiÞ ¼ 0

so that ½fu;X � 2 Fk.

(ii) Assume the contrary, i.e., there exists X 2 Fk nFkþ1 such that for every

u 2 {0,1}m, ½fu;X � 2 Fk, then using the formula in (i) above, we obtain

LXLfu
Lfuk

� � � Lfu1
(hi) = 0, i = 1, . . .,p, for every u,u1, . . .,uk 2 {0,1}m. But then,

X 2 Fkþ1, which contradicts the assumption. h

On this basis [1] establish the following corresponding result for the Fk.

Lemma 2.14. (i) "u 2 {0,1}m,[fu,Fk+1] � Fk, for k = 1, . . ., p* � 1. (ii) "X 2
FknFk+1,$u 2 {0,1}m such that [fu,X] 2 Fk�1nFk for k = 1, . . ., p* � 1.
Proof. For every X 2 Fk+1, ½fu;X � 2 Fk, 0 6 k 6 p* � 1 by Lemma 2.13. Now

compute

½fu;X � ¼ � ofu
oz

X ¼ �AðuÞX � ouðy; uÞ
oy

CX ¼ �AðuÞX :
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Thus, [fu,X] is a constant vector field. Hence, [fu,X] 2 Fk. This proves (i). Now,

suppose X 2 FknFk�1. Again from Lemma 2.13, we have ½fu;X � 2 Fk�1 nFk.

But the calculation above shows [fu,X] is a constant vector field, so [fu,X] 2
Fk�1nFk, thus establishing (ii). h
Proof of main result. Condition (1): by rewriting Eq. (7) in z-coordinates and in

view of the definition of the sets Fk, we can establish Yi 2 Fji�2nFji�1, for each

i = 1, . . .,p.
Lemma 2.14 implies there exists u1 2 [0, 1]m such that ½fu1 ; Y i� 2 F ji�2 n F ji�1.

Successive application of Lemma 2.14 leads to the conclusion $u1, . . .,uji�1 2
[0,1]m such that

½fuji�1 ; ½� � � ½fu1 ; Y i� � � ��� 2 F 0 n F 1: ð9Þ

Now we can show that there exists uji
such that

½fuji ; ½� � � ½fu1 ; Y � � � ��� 62 F 0: ð10Þ

To see this, assume the contrary, i.e.,

8uji 2 Rm; L½fuji ;½���½fu1 ;Y i ������ðhÞ 62 F 0

so that

Lfuji L½f
uji�1 ;½���½fu1 ;Y i������ðhÞ � L½f

uji�1 ;½���½fu1 ;Y i������Lfuji ðhÞ ¼ 0:

Now, since

½fuji�1
; ½� � � ½fu1 ; Y � � � ��� 2 F 0

it follows that L½fuji�1
;½���½fu1 ;Y i������ðhÞ ¼ 0 and, hence,

½fuji�1 ; ½� � � ½fu1 ; Y i� � � ��� 2 F 1

which contradicts Eq. (9). Consequently, (10) holds.

By construction

Zi
u1���uji�1 :¼ ½fuji�1

; ½� � � ½fu1 ; Y i� � � ���

is a constant vector field in the z-coordinates, i.e.,

Zi
u1���uji�1 ¼

Xn

k¼1

di
k

o

ozk

for some constants di
k. Now compute,

CjZi
u1���uji�1 ¼ Cj

Xn

k¼1

di
k

o

ozk
¼ di

j

o

ozj
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so that

LZi

u1 ���uji�1
ðCzÞ ¼ CZi

u1���uji�1 ¼

di
1

..

.

di
p

2
664

3
775:

It is not difficult to verify that the (constant) vector fields Zi
u1���uji�1 are linearly

independent. Now, from (10), we have for each i = 1, . . .,p

½ di
1 � � � di

p 0 � � � 0 �T 62 kerC:

Since rankC = p, we have dimkerC = n � p and there are precisely p inde-

pendent vectors not contained in kerC. It follows that the p-vectors

½ di
1 � � � di

p �; i ¼ 1; . . . ; p are independent. Consequently,

LZ1

u1 ���uj1�1
ðCzÞ � � � LZp

u1 ���ujp�1
ðCzÞ

h i
¼

d1
1 � � � dp

1

..

. . .
. ..

.

d1
p � � � dp

p

2
664

3
775

is invertible. This implies I 6¼ ;.
Condition (2): since the Zi

u1���uji�1 are constant vector fields in the z-

coordinates, Condition (2) holds.

Condition (3): in the z-coordinates, compute

X i ¼ LZ1

u1 ���uj1�1
ðCzÞ � � � LZp

u1 ���ujp�1
ðCzÞ

h i�1

Zi
u1���uji�1 ¼

o

ozi

which satisfies the conditions of Proposition 3.5 for a system in the form obser-

ver form (4), see item (1) in Remark 3.6 and [9,10]. h
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